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Abstract. We consider the dynamical scaling and kinetic roughening of single-valued interfaces propagating
in 2D fractal media. Assuming that the nearest-neighbor height difference distribution function of the fronts
obeys Lévy statistics with a well-defined algebraic decay exponent, we consider the generalized scaling forms
and derive analytic expressions for the local scaling exponents. We show that the kinetic roughening of
the interfaces displays intrinsic anomalous scaling and multiscaling in the relevant correlation functions.
We test the predictions of the scaling theory with a variety of well-known models which produce fractal
growth structures. Results are in excellent agreement with theory. For some models, we find interesting
crossover behavior related to large-scale structural instabilities of the growing aggregates.

PACS. 68.35.Ct Interface structure and roughness – 47.53.+n Fractals – 61.43.Hv Fractals; macroscopic
aggregates (including diffusion-limited aggregates)

1 Introduction

Kinetic roughening of driven interfaces in random media
is a ubiquitous phenomenon in nature. In addition to be-
ing a theoretically interesting and challenging problem in
non-equilibrium statistical physics, kinetic roughening has
important applications in e.g. crystal growth [1] and fluid
invasion in porous media [2]. In many cases of interest,
there is a description of kinetic roughening processes in
terms of a stochastic equation of motion for the (single-
valued) height function h(x, t). The best known example
is the Kardar-Parisi-Zhang (KPZ) equation [3]

∂h(x, t)
∂t

= ν∇2h(x, t) +
λ

2
|h(x, t)|2 + η, (1)

where η is a noise term. For strongly driven interfaces, the
noise term is usually uncorrelated in space and time, but
in some cases it may also depend on h in which case the
noise is quenched. The KPZ equation and its variants with
different types of noise have been analyzed extensively.
Another interesting and more recent class of problems
concerns cases where the equation of motion for h(x, t)
is non-local due to e.g. an underlying conservation law in
the system [4–6]. For such cases, it’s not generally possible
to write down a local equation of motion of the form of
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equation (1). However, both classes of growth equations
typically lead to algebraic scaling of the relevant height
correlation functions, with associated scaling exponents
whose values are known exactly in some special cases.

There also exist interesting connections between ki-
netic roughening and more general theories of scale-
invariant structures [1,7]. An important special case is the
connection to percolation theory [8] for fronts which be-
come pinned due to quenched disorder [2]. There are two
particularly interesting universality classes arising from
the quenched KPZ description near pinning, namely the
isotropic percolation and directed percolation depinning
(DPD) cases [9]. These two differ by their scaling expo-
nents, as well as by the behavior of the nonlinear term in
the underlying KPZ equation. Another case related to per-
colation is that of the propagation of interfaces in a back-
ground which itself undergoes a percolation transition and
is thus a fractal [10,11]. This situation arises in phase-field
models of slow combustion fronts [10], and “forest fire” lat-
tice models [11]. The corresponding interfaces are forced
to be single-valued by defining the height variable h(x, t)
at each x to be the highest point where “burning” or
“burned” trees appear. In this isotropic percolation depin-
ning (IPD) case [11], some of the scaling exponents of the
fronts can be directly related to the geometric properties
of the underlying percolation cluster similar to the DPD
case [9]. However, in the IPD limit there exists no KPZ
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type of description for the interface dynamics. In addition
to percolation, nontrivial fractal structures emerge from
many growth models, including Diffusion Limited Aggre-
gation [12] and various oblique-incidence ballistic growth
models [1]. The current understanding of the roughening
properties of fronts in such fractals is still rather incom-
plete.

In this work, our aim is to examine the problem of ki-
netic roughening of single-valued fronts in different types
of fractal media. To this end, we study front propagation
and kinetic roughening in three different classes of frac-
tal models: the invasion percolation (IP) models [13], the
diffusion limited aggregation (DLA) model [12], and the
ballistic deposition (BD) model [14] with an uniform dis-
tribution of launch angles. We have recently shown both
analytically and numerically [15], that for the IP mod-
els the results can be explained by the underlying Lévy
statistics of the nearest-neighbor (NN) interface height
differences. From such an algebraic distribution of the NN
slopes we have derived exact expressions for some of the
scaling exponents of fronts in the IP model. In the present
work we present a more general and detailed derivation
of the scaling exponents, and generalized scaling forms
for the relevant correlation functions. In particular, we
show that in addition to the local roughness exponents,
the global roughness exponent χ is determined by the de-
cay exponent of the NN slopes and is thus unambiguously
related to the geometry of the fractal structure. We also
show that the dynamical growth processes induce mul-
tiscaling [16] and anomalous intrinsic scaling [17] of the
height difference correlation functions. We then proceed
with numerical simulations of the three models described
above. Results for the IP models are in excellent agree-
ment with the analytic predictions. For the DLA and BD
models, however, we find additional, more complex behav-
ior. The decay exponents of the corresponding NN slope
distribution functions depend on the system size, and
the functions display non-algebraic tails for large enough
slopes. This is related to the shadowing instability in the
DLA and BD cases, and it can lead to the vanishing of
multiscaling behavior in these models. Such crossover phe-
nomena have been reported in ballistic growth models [18]
and DLA type of models describing electrochemical depo-
sition experiments [19].

2 Scaling properties of single-valued
interfaces

For any interface propagating in a random medium,
we define a set of single-valued local interface heights
{h(xi, t)}L

i=1 at xi by the highest occupied lattice site
from the reference plane h = 0 [11]. This corresponds to
a solid-on-solid (SOS) description of the interface which
excludes any overhangs belonging to the perimeter of a
fractal cluster.

2.1 Classification of kinetic roughening

A rough surface may be characterized by the fluctuations
of the height around its mean value. Thus, the basic quan-
tity to look at is the global width

wq(t, L) ≡ 〈[h(x, t) − h(t)]q〉1/q, (2)

where the overbar denotes spatial averaging over x in a
system of size L and angular brackets denote configuration
(noise) averaging. For self-affine interfaces, the scaling of
global widths is typically independent of q and satisfies
the Family-Viscek (FV) scaling ansatz [20]

w(t, L) = tβf(L/ξ(t)), (3)

(where only the case q = 2 is usually considered) with a
scaling function f(u) that satisfies

f(u) ∼
{

uχ, for u � 1;
const., for u � 1.

(4)

In these equations χ is the roughness exponent and char-
acterizes the stationary regime, in which the correlation
length ξ(t) ∼ t1/z has reached ξ ≈ L. The quantity
z defines the so-called dynamic exponent, and the ratio
β = χ/z is called the growth exponent and characterizes
the evolution of temporal correlations of the surface [2].

Some growth models exhibit different scaling of global
and local interface fluctuations. This can be quantified by
defining a local width of the interface w(t, �) as

w(t, �) ≡ 〈〈[h(x, t) − 〈h(t)〉�]2〉�〉1/2, (5)

where 〈· · · 〉� denotes an average over x in windows of spa-
tial size �. When local and global roughening processes
differ, the surface is said to exhibit anomalous scaling. In
this case, the scaling of the local width is of the form of
equation (3), w(t, �) ∼ tβfA(�/ξ(t)) with the anomalous
scaling function fA(u) satisfying

fA(u) ∼
{

uχloc , for u � 1;
const., for u � 1,

(6)

where the new independent exponent χloc is called the
local roughness exponent. Anomalous scaling has been
found to occur in many growth models [21–23] as well as
observed in experiments [24–26]. Anomalous scaling thus
implies that there is one more independent exponent χloc

describing local roughness of the interface. Experimen-
tally, the local roughness exponent can be measured by
direct methods since usually the system size is fixed. In
fracture experiments [26] of systems with varying sizes
both the local and global roughness exponents have been
measured in good agreement with the scaling picture de-
scribed above.

Recently, Ramasco et al. [17] proposed a generalized
scaling theory. The corresponding scaling form incorpo-
rates all the different forms known thus far that dynamical
scaling can take and predicts the existence of a new class
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of growth models with novel anomalous scaling proper-
ties. Let ĥ(k, t) = L−1/2

∑
x[h(x, t)− h̄(t)] exp(ikx) be the

Fourier transform of the height of the surface in a system
of size L. The whole scaling picture can be expressed in
terms of the scaling of the structure factor

S(k, t) =
〈
ĥ(k, t)ĥ(−k, t)

〉
· (7)

Note that the other quantities such as the global and local
width can be obtained from S(k, t) [17]. If the roughening
process under consideration shows generic dynamic scal-
ing, that is ξ(t) ∼ t1/z for small times and ξ ∼ L in the
saturated regime [17], then the scaling of the structure
factor is given by

S(k, t) = k−(2χ+1)s
(
kt1/z

)
, (8)

where the scaling function has the general form

s(u) ∼
{

u2(χ−χs), for u � 1;
u2χ−1, for u � 1,

(9)

and the exponent χs is called the spectral roughness ex-
ponent. Now, the scaling properties of the interface can
be classified according to the values of χ, χloc, and χs as
follows [17]:


if χs < 1 ⇒ χloc = χs

{
χs = χ ⇒ Family − Vicsek;
χs 
= χ ⇒ Intrinsic anomalous;

if χs > 1 ⇒ χloc = 1
{

χs = χ ⇒ Superrough;
χs 
= χ ⇒ New class.

(10)

The difference between superroughening and intrinsic
anomalous roughening has already been noted by López
et al. [27]. All other classes can be distinguished from the
difference between local and global scaling of the width,
but the new scaling class is distinguishable from the struc-
ture factor only [17]. It will be shown in Section 3 that
here the growing interfaces are intrinsically anomalous,
and they exhibit multiscaling in terms of the local expo-
nents.

2.2 Correlation functions

To quantitatively study the nature of the interface fluc-
tuations we consider in addition to the structure factor a
set of correlation functions. The behavior of the temporal
and spatial correlation functions describing local proper-
ties of growing interfaces indicates whether or not anoma-
lous scaling is present. Self-affine surfaces that obey the
FV scaling have the same global and local roughness ex-
ponents. In the case of growing fractal aggregates studied
here, global and local scaling differ.

To examine the spatiotemporal development of the in-
terfaces, we define the qth order height difference correla-
tion function as

Gq(x, t) = 〈|h(x0, t) − h(x0 + x, t)|q〉1/q, (11)

with Gq satisfying the anomalous scaling relation [11,27]

Gq(x, t) = ξαq xχq fq(x/ξ). (12)

Here, the scaling function fq(u → 0) = const. and fq(u →
∞) ∝ u−χq [11]. The exponents αq define the so-called
anomaly exponents, and χq’s define local roughness expo-
nents, with χloc = χ2 in equation (10).

A quantity measuring the temporal development of the
local roughness of the interfaces is the average nearest
neighbor height difference function σq(t), defined by [21]

σq(t) = 〈|h(xi+1, t) − h(xi, t)|q〉1/q , (13)

which at early times follows the scaling relation

σq ∼ ξαq ∼ tαq/z ∼ tβq , (14)

where βq’s are the local growth exponents. At late times,
σq’s saturate to system size dependent values.

One can also define the time-dependent qth order
height-height fluctuation correlation function

Cq(t0, t) = 〈[δh(x, t0) − δh(x, t0 + t)]q〉1/q, (15)

where δh ≡ h − h is the deviation from the average
height. In the saturated regime, one expects Cq to scale
as Cq ∼ tβ̃q at early times, and to saturate to a system
size dependent value at large times.

3 Exact results for scaling exponents

3.1 Local slope distributions

For the case of the KPZ equation without quenched ran-
domness, it is well known [2] that the steady-state distri-
bution of (coarse-grained) local slopes of the height vari-
ables ∇h in 1D is Gaussian, P (∇h) ∼ exp[−(∇h)2]. This
leads to a self-affine interface whose height difference pro-
file is equivalent to the trajectory of a 1D random walk,
and thus χ = 1/2 characterizing the “width” of the walk.
However, in systems where quenched noise is present, the
underlying probability distributions are typically of Lévy
type, that is, they have an algebraic decay form [7]. In our
previous work [15], we have shown that this is indeed the
case for the IP models. Here, we present the arguments in
more detail.

Let us consider the case where the distribution func-
tion P (∆h) for local nearest-neighbor (NN) slopes ∆h ≡
|h(xi+1) − h(xi)| has a Lévy distribution of the form

P (∆h) ∼ (∆h)−α, (16)

where α > 1 [7,15]. Equation (16) can be used to derive
expressions for the local scaling exponents in the following
way. Let |∆h|max denote the largest of the NN slopes. We
can assume that

[σq(t)]q ≈
∫ |∆h|max

0

d(∆h)P (∆h)(∆h)q . (17)
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For the maximum height differences, asymptotically
|∆h|max ∼ w∞(t) ∼ tβ , since by equation (2), w∞ mea-
sures only the largest of the height differences and there is
no q dependence in the scaling of the global width. Thus,
we obtain

σq(t) ∼ t[1+(1−α)/q]β , (18)

which means that the local growth exponents are given by

βq =
(

1 +
1 − α

q

)
β. (19)

The local roughness exponent can be obtained by com-
bining the scaling of σq(t) and Gq(x, t) (Eqs. (12) and (14)
with x ≈ ξ ≈ L). Using χq + αq = χ and the fact that
βqz = αq, and requiring that α is independent of q, we
find that

χq = 1/q. (20)

The requirement that a unique, well-defined α exists yields
a prediction for the global roughness exponent as

χ =
1

α − 1
· (21)

These arguments show that both the local and global
roughness exponents are uniquely determined by the
statistics of the NN slopes which is the fundamental quan-
tity here. Moreover, the local χq’s are “superuniversal” in
the sense that they don’t depend on the algebraic expo-
nent α. Our results also show that multiscaling [16] and
intrinsic anomalous roughening occur for α > 1, but that
the interfaces are never superrough since χloc = χ2 =
1/2. The present arguments, however, give no informa-
tion about β (or z) which describes the true dynamics of
the interfaces. Also, to obtain the βq’s as given in equa-
tion (19), the global β needs to be determined. Its value
depends on the details of the dynamical rules of interface
propagation even if the statistical properties of the under-
lying quenched noise are the same [11,15].

Similar values for the local roughness exponent χloc

were recently observed for roughening of fluid front in
Hele-Shaw cell [28]. In these experiments, the columnar
nature of the quenched disorder also induces large slopes
in the interface. Further, the local slope distribution was
shown to have a power-law decay form [29].

Recently, López [30] has introduced a scaling approach
to calculate scaling exponents from actual continuum
equations describing surface growth. By considering the
scaling of the mean square local derivative (or slope) of
the interface height, s(t) = 〈(∇h)2〉 ∼ t2κ, he has shown
that the interfaces exhibits anomalous scaling whenever
the scaling exponent κ > 0. This exponent corresponds
exactly to our β2 = [1+(1−α)/2]β, which is here positive
for 1 < α < 3. However, in the present case everything
is determined by the NN slope distribution, and no as-
sumptions are needed about the possible existence of a
(local) growth equation or the form of a coarse-grained
slope distribution function.

3.2 Generalized scaling

To explain the scaling behavior of Cq(t0, t) we define a
generalized correlation function C̃q(x, t0, t) as

C̃q(x, t0, t) ≡ 〈|δh(x0, t0) − δh(x0 + x, t0 + t)|q〉1/q. (22)

By definition, it has the following limits:



C̃q(x, t0, 0) = Gq(x, t0);

C̃q(1, t0, 0) = σq(t0);

C̃q(0, t0, t) = Cq(t0, t).

(23)

Next we define two dimensionless scaling variables as u1 ≡
x/ξ(t0) and u2 ≡ t/t0. In terms of these we propose the
following scaling form for C̃q:

C̃q(x, t0, t) = ξ(t0)αq xχq f̃q(u1, u2). (24)

First, for u2 = 0, we must obtain the scaling form
of Gq(x, t0). Therefore, f̃q(u1, 0) = fq(u1) ∝ u

−χq

1
for u1 � 1. For small times t0 this gives Gq(x, t0) ∝
t
(αq+χq)/z
0 ∝ tβ0 . Next, we consider a non-zero u2. Tak-

ing the limit x → 0 of C̃q we should recover Cq. Since
the x dependence of C̃q must vanish, we require that
f̃q(u1, u2) ∝ u

−χq

1 gq(u2) for u1 → 0, where gq is a new
scaling function. Hence,

lim
x→0

C̃q(x, t0, t) → ξ(t0)αqxχq u
−χq

1 gq(u2)

∝ tβ0 gq(t/t0) ∝ Cq(t0, t), (25)

where gq(u2) ∝ u
β̃q

2 for u2 � 1. At this point, β̃q is
unknown. In the opposite limit u2 � 1 we expect that
gq(u2) = const. This is an explicit scaling prediction for
Cq. Next, we consider the known scaling limits of C̃q for
x = 1 and for x = 0. We assume that the scaling behav-
ior in t0 of C̃q stays the same irrespective of whether we
approach the origin u1 = u2 = 0 along the axis u1 or u2.
Let us first set u2 = 0 (t = 0):

C̃q(x, t0, 0) = ξ(t0)αqxχq fq(u1). (26)

Approaching the origin along the u1 axis means that we
set x = 1 (to make contact with σq) and require that ξ(t0)
is so large that u1 = 1/ξ(t0) � 1. This yields the known
scaling of σq:

C̃q(1, t0, 0) ∝ ξ(t0)αq ∼ t
βq

0 ∼ σq(t0), (27)

where we used the fact that βq = αq/z. Next, we set
u1 = 0 (x = 0) with the result that C̃q reduces to Cq.
Approaching the origin by setting u2 � 1 we have

C̃q(0, t0, t) ∼ tβ0 gq(u2) ∼ tβ0 (t/t0)β̃q ∼ tβ̃q t
β−β̃q

0 . (28)

The two limits given by equations (27, 28) are different in
the sense that the latter goes to zero when t → 0, whereas



J. Asikainen et al.: Dynamics of single valued fronts propagating in fractal media 257

the former stays finite for all values of t0 (no matter how
small u1 = 1/ξ(t0) becomes; only if we set x = ε and let
ε → 0 will C̃q(ε, t0, 0) go to zero as well). However, taking
the scaling in variable t0 to be the same in both limiting
cases, we are able to derive the final result for β̃q:

β̃q = β − βq. (29)

Scaling forms will be numerically tested in Section 5.3.

3.3 Finite size scaling

We can generalize the scaling of C̃q even further by pos-
tulating the following form:

C̃q(x, t0, t, L) = ξ(t0)αqxχq f̃q(u1, u2, u3), (30)

where we have introduced a third dimensionless scaling
variable u3 ≡ ξ(t0)/L, which was assumed to be zero in
the previous section. It should be noted that equation (30)
is exactly of the same form as what the scaling functions
of linear growth theories would have [31]. Let us study
the finite size scaling of Cq. Based on equation (25) we
can write

Cq(t0, t, L) ∼ tβ0 gq(u2, u3). (31)

For a finite system, the correlation function should be-
come independent of the origin of time t0 in the satu-
rated region. Therefore, for t0 � Lz (u3 � 1) we assume
that gq(u2, u3) ∼ uγ1

3 g′q(u2), where g′q is a new scaling
function and γ1 some unknown scaling exponent. Because
there is still some t0 dependence left in the argument u2

of g′q we further assume that in the limit we are consid-
ering g′q(u2) ∼ uγ2

2 , where yet another unknown scaling
exponent γ2 has been introduced. Since all variables of Cq

follow a power law scaling form, it is easy to get a condi-
tion for the vanishing of the t0 dependence. For u3 → ∞,
we have

Cq(t0, t, L) ∼ tβ0 uγ1
3 g′q(u2) ∼ tβ0 uγ1

3 uγ2
2 (32)

∼ t
β+γ1/z−γ2
0 tγ2 L−γ1 . (33)

To get rid of t0 we must set β + γ1/z − γ2 = 0. On the
other hand we know that Cq ∼ tβ̃q which fixes γ2 = β̃q.
Knowing γ2 it is easy to solve for γ1:

γ1 = z(γ2 − β) = −zβq. (34)

Therefore, in the limit of large u3 we can construct the
finite size scaling form of Cq based on equation (33) as
follows:

Cq(t, L) ∼ L−γ1tγ2 = Lzβq tβ̃q (35)

= Lzβq(t/Lz)β̃q Lzβ̃q = Lχ(t/Lz)β̃q . (36)

Thus, we predict that Cq(t, L) = LχFq(t/Lz), where the
new scaling function Fq(s) ∼ sβ̃q for s � 1, in analogy
with the FV scaling form.

Fig. 1. (a) Snapshots of a series of single-valued interfaces as
generated by the NTIP model. (b) Snapshot of a configuration
generated by the DLA model. Grey shading shows how the
overhangs are cut off to define the single-valued height profile.
(c) Snapshots of a series of single-valued interfaces as generated
by the DLA model. (d) Snapshots of a series of single-valued
interfaces as generated by the BD model.

4 Fractal models

To study the validity of our theory of Section 3, we exam-
ine three well-known models involving interface dynamics
in random media, namely the invasion percolation (IP)
model [8], diffusion limited aggregation (DLA) [12], and a
ballistic deposition model with uniform launch angle dis-
tribution (BD) [14]. These models are reviewed in this
section, together with a short summary of the technical
details of our numerical simulations.

4.1 Invasion percolation

Invasion percolation (IP) models [13] constitute an impor-
tant and widely studied class of percolation theory. The
IP is a dynamic percolation process that describes the
displacement of one fluid by another in a porous medium
in the limit where capillary forces dominate the viscous
forces [8]. Figure 1a shows a sequence of single-valued in-
terfaces generated by the model. IP can be divided in two
cases: one with trapping (TIP) and the other without it
(NTIP). TIP describes a situation in which the defender
fluid is incompressible, and thus invasion process termi-
nates in regions fully surrounded by invading fluid. The
NTIP model, on the other hand, is consistent with the
case where the defending fluid is compressible. An impor-
tant property of the NTIP model is that it is believed to
be equivalent to ordinary percolation [32] which means
that its geometric properties are well known. The tempo-
ral development of IP clusters has been studied in refer-
ences [33,34], and self-organization and kinetic roughening
with local slope constraints in reference [35].

Here we study the IP model with periodic boundary
conditions in the horizontal x direction and free bound-
aries in the vertical y direction. The numerical simulations
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of the IP lattice models were done on a 2D square lattices
of sizes L × Ly, with L = 32 − 4096 and Ly = L − 4L.
The bottom row is initially occupied by the invading fluid.
At each time step, one searches for the nearest neighbor
(NN) perimeter sites that are occupied by the defending
fluid, chooses the one with the smallest capillary number
and occupies it by the invading fluid. This process is then
repeated until the invasion cluster reaches the top of the
lattice. The main algorithmic aspect in our simulations is
that the list of active growth sites is implemented via a
balanced binary search tree (see e.g. Refs. [36–38]). By this
method, the insertion and deletion operations on the list
can be performed in time ∝ ln(n), where n is the list size.
In the case of TIP, one has to at each time step check if an
the newly invaded site caused a region of defending fluid
to be trapped [39]. If this is the case, the active perimeter
sites within the trapped region are removed from the list
of growth sites [40].

4.2 Diffusion limited aggregation

Diffusion limited aggregation (DLA) is a model of irre-
versible growth to generate fractal structures as proposed
by Witten and Sander [12]. It has been used to study a
great variety of processes: dendritic growth, viscous fin-
gers in fluids, dielectric breakdown, electrochemical de-
position etc. [41]. In spite of the apparent simplicity of
the model, analytic solutions for most of its properties
are still unavailable. A typical DLA cluster is shown in
Figure 1b, with single-valued interfaces in c. As in the
case of IP, we grow DLA clusters in cylindrical geometry,
starting with an initially occupied bottom row. At each
step, a walker is launched at a randomly chosen position
on a line which is one lattice unit higher than the high-
est occupied site in the cluster. The walker then performs
random walk until it sticks to the cluster. This process is
then repeated until the desired cluster size is reached. To
speed up the simulations, we use special techniques [42]
that allow the walker to reach the already existing cluster
faster. The largest lateral system size used in our DLA
simulations was L = 4096.

4.3 Ballistic deposition

Ballistic deposition (BD) was introduced as a model of
colloidal aggregates, and early studies concentrated on the
properties of the porous aggregate produced by the model
(see Ref. [2] and references therein). In the model, parti-
cles are deposited vertically at random positions. Particle
follows a straight trajectory until it reaches the surface,
where it sticks. We study a modified version of the origi-
nal model, introduced by Karunasiri et al. [14], in which
the launch angle is chosen from a distribution P (θ), with
−π < θ < π. In particular, we consider here the case with
a uniform distribution for θ. Deposition with a distribu-
tion P (θ) with respect to the substrate normal leads to
an instability, known as the shadow instability [14]. The

shadow instability is due to the fact that parts of the sur-
face which “stick out” may shadow nearby points thus
retarding their growth. In the case of low-temperature
sputter deposition of amorphous and polycrystalline thin
films, the shadow instability is known to play a significant
role in determining the surface morphology [43]. A series
of single-valued interfaces generated by the BD model is
shown in Figure 1d.

To enable simulations of large enough systems, we use
bit-packing procedure for the BD model. Each 32 bit inte-
ger of the simulation lattice describes the state of 32 sites
of the “macro-lattice”. In practice, we pack the lattice
in the direction perpendicular to the substrate. Thus the
periodic boundaries in the parallel direction are easily im-
plemented. The largest system size used in the BD simu-
lations was L = 131072.

5 Results

In this section, we present our numerical results from com-
puter simulations of the three models as described in the
previous section. We will first demonstrate, that for all the
three models considered here a Lévy type of slope distri-
bution function follows, and then discuss direct numerical
findings of the scaling exponents.

However, before this we note that it’s possible to de-
vise a simple test by simply generating interfaces directly
from the Lévy distribution of equation (16). Such a model,
of course, has no dynamics but the local roughness expo-
nents can be easily determined from the spatial correla-
tion functions. We have generated height profiles where
independent NN height differences were drawn from the
distribution P (∆h) ∼ ∆h−α with 1 < α < 3. Our nu-
merical estimates for the χq’s support the prediction of
equation (20), namely that they do not depend on the
decay exponent α.

5.1 Local slope distributions and roughness exponents

According to our theoretical arguments, the fundamen-
tal quantity here is the NN height difference distribution
function P (∆h). We have determined this from direct nu-
merical simulations of each model for single-valued inter-
faces in the late-time saturated regime. We have also de-
termined both the global exponents using w(L, t), S(k, t)
and Gq(x, t) and the local quantities from the appropriate
correlation functions.

1. Invasion percolation. For the case of an isotropic per-
colation cluster, we have previously shown through an
analytic argument that the exponent α is given ex-
actly by α = (−τ + 1)D = 2, where τ = 187/91
and D = 91/48 are the cluster size probability ex-
ponent and the cluster’s fractal dimension, respec-
tively [15]. From equation (21) this leads to the pre-
diction that χ = 1, which is also expected due to
the spatial isotropy of the cluster [11]. In Figure 2 we
show P (∆h) as determined numerically for the NITP
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Fig. 2. The distribution function P (∆h) for the NTIP model.
Inset shows P (∆h) for the TIP model. Dashed lines show the
slope α = 2. The system size for both cases is 1024.

Table 1. The local scaling exponents from numerical simula-
tions of the NTIP model. Analytic predictions are shown in
the lower part of the table.

q βq β̃q χq

1 O(log) 0.95 ± 0.04 0.86 ± 0.01

2 0.51 ± 0.05 0.51 ± 0.01 0.51 ± 0.02

3 0.67 ± 0.04 0.33 ± 0.02 0.34 ± 0.02

4 0.73 ± 0.02 0.24 ± 0.01 0.26 ± 0.01

5 0.75 ± 0.03 0.19 ± 0.02 0.20 ± 0.02

6 0.77 ± 0.02 0.16 ± 0.02 0.17 ± 0.02

1 − 1/q 1/q 1/q

model, and we indeed find that α = 2.00±0.05. For the
global roughness exponent we find using equation (4)
that χ = 0.99 ± 0.02. The local scaling exponents are
found by computing the correlation functions of equa-
tion (11), and the results are in excellent agreement
with the prediction χq = 1/q. The scaling exponents
are summarized in Table 1. We also verified the anoma-
lous scaling form of equation (12) as shown in Figure 3.

In the inset of Figure 2 we also show results for the
TIP model, for which α = 1.9 ± 0.1. Thus, within our
numerical accuracy the two models have the same α,
and thus identical roughness exponents. This is not
a trivial result since numerical estimates for the TIP
model give D ≈ 1.82 [13], a value somewhat lower than
91/48 ≈ 1.90.

2. Diffusion Limited Aggregation. For the DLA case the
distribution function is given in Figure 4, for a sys-
tem of size L = 1024. An interesting feature in P (∆h)
is that there seem to be roughly three regimes in
it. For 10 � ∆h � 50, the effective α has a value
of close to 2.0, after which it levels off to about

Fig. 3. Scaling of the correlation functions G2(x, t) for the
three models. The groups of curves for different models have
been shifted for clarity. The exponents used in the data collapse
are χ = 1, 1.3, and 1.25, and z = 1, 1, and 1.25 for the NTIP,
DLA, and BD models, respectively.

Fig. 4. The distribution function P (∆h) for the DLA model
for L = 1024. Inset shows the scaling of w(L) with the system
size L, with a clear crossover around L = 16. See text for
details.

α = 1.6 ± 0.1. According to our predictions changing
α should change χ, and we have verified this by di-
rectly computing χ from the global width for systems
of different sizes. The results are in the inset of Fig-
ure 4. Two distinct scaling regimes are visible, with
χ = 1.05 ± 0.03 and χ = 1.21 ± 0.04 for the set of
smaller and larger system sizes, respectively. We also
measured the global roughness exponent from S(k, t)
to be χ = 1.35 ± 0.10, in agreement with the second
regime. Again, the local χq’s are in excellent agreement
with theory, as can be seen in Table 2. Finally, for
∆h � 1000 there is a distinct bump in P (∆h). At the
end of this section we will argue that for large enough
values of ∆h, the distribution has a non-algebraic form,
leading to further observable changes in the scaling be-
havior.
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Table 2. The local scaling exponents from numerical simu-
lations of the DLA model. The determination of the growth
exponents is discussed in the text. Analytical predictions are
shown in the lower part of the table, and they agree with sim-
ulations for α ≈ 2, β = 1.35.

q βq β̃q χq

1 0.27 ± 0.03 0.89 ± 0.04 0.86 ± 0.03

2 0.71 ± 0.03 0.49 ± 0.03 0.52 ± 0.02

3 0.91 ± 0.02 0.32 ± 0.02 0.36 ± 0.02

4 1.01 ± 0.02 0.24 ± 0.02 0.27 ± 0.02

5 1.07 ± 0.02 0.19 ± 0.02 0.22 ± 0.02

6 1.11 ± 0.02 0.15 ± 0.02 0.19 ± 0.02

[1 + (1 − α)/q]β β − βq 1/q

Fig. 5. A series of distribution functions P (∆h) for the BD
model for different system sizes. Changes in the effective slopes
are evident (see text for details). Inset shows the scaling of
w(L) with the system size L, with a crossover around L = 128.

3. Ballistic Deposition. Conclusions similar to that of the
DLA case apply to the BD model as well. In Figure 5
we show three slope distribution functions, for sys-
tems of sizes L = 128, 1024, and 4096. In these three
cases, the different regimes are clearly visible. For the
smallest system, α is very close to 2.0, while for the
larger systems the effective values of α for larger slopes
are reduced to about 1.7 ± 0.1 and 1.6 ± 0.1, respec-
tively. The inset shows χ as measured directly from
the global width, showing how the effective χ tends
to increase with system size corresponding to the de-
creasing slope distribution exponent. Again, a bump is
visible in P (∆h) for the largest slopes. In reference [44]
χ ≈ 1 was measured for the BD model, corresponding
to smaller system sizes as in the inset. The local rough-
ness exponents are summarized in Table 3.

Table 3. The local scaling exponents from numerical simula-
tions of the BD model. Determination of the growth exponents
is discussed in the text. Analytic predictions are shown in the
lower part of the table, and they agree with simulations for
α ≈ 2.1, β = 1.16.

q βq β̃q χq

1 0.0 ± 0.1 0.86 ± 0.04 0.97 ± 0.03

2 0.51 ± 0.03 0.50 ± 0.03 0.54 ± 0.03

3 0.66 ± 0.03 0.32 ± 0.02 0.37 ± 0.03

4 0.73 ± 0.02 0.24 ± 0.02 0.28 ± 0.02

5 0.78 ± 0.02 0.19 ± 0.02 0.23 ± 0.02

6 0.81 ± 0.02 0.15 ± 0.02 0.19 ± 0.02

[1 + (1 − α)/q]β β − βq 1/q

Fig. 6. Correlation functions σq(t) for q = 2, 4, and 6 (from
bottom to top) for the models studied. For the BD case, we
plot log[σq(2t) − σq(t)] here. Solid lines indicate the fits (see
Tabs. 1, 2 and 3). Fitted curves have been shifted for clarity.
Inset: σq(t) for the BD model as in the main figure. After the
first crossover time curves turn parallel, and multiscaling in
time vanishes (see text for details). From bottom to top, data
are for q = 2, 3, . . . , 6.

5.2 Temporal scaling and correlation functions

1. Invasion percolation. We have measured β directly
from w(t) and find that it grows linearly in time,
i.e. β = 1.00 ± 0.03. This indicates that the dy-
namic exponent z = 0.99 ± 0.05. This differs from the
so-called isotropic percolation depinning [11] case for
which z = dmin, where dmin ≈ 1.13 is the minimum
distance exponent of the underlying isotropic 2D per-
colation cluster. In particular, this demonstrates how
changing the dynamical rules from those of the NTIP
model to the nearest-neighbor “forest fire” model of
reference [11] changes the growth exponent. Regarding
local scaling, the temporal qth order correlation func-
tions defined in equation (13) were evaluated in the
growth regime, and those of equation (15) in the satu-
rated regime. Agreement with the theory is very good,
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Fig. 7. Correlation functions Cq(t) for q = 2, 4, and 6 (from
bottom to top) for the models studied. Solid lines indicate the
fits (see Tabs. 1, 2 and 3). Fitted curves have been shifted for
clarity.

as can be seen in Figures 6 and 7, and Table 1. We note
that for the NTIP case, equation (29) predicts that
β̃q = 1/q. The exponents βq and β̃q were evaluated
for the growing TIP interfaces as well. The numerical
estimates are indistinguishable from the NTIP case.

2. Diffusion Limited Aggregation. The growth exponent
is β = 1.35 ± 0.02 as measured directly from w(t) for
L = 4096, and the dynamic exponent z = 1.0 ± 0.1.
The temporal qth order correlation functions defined
in equation (13) were evaluated in the growth regime
for L = 4096, and those of equation (15) in the sat-
urated regime for L = 2048. Since the corresponding
local exponents βq and β̃q depend explicitly on α which
itself changes with system size (and the magnitude of
the NN slopes), it is not possible to pin down unique
values for these exponents. Despite this problem, rela-
tively good fits can be obtained for both temporal cor-
relation functions as can be seen in Figures 6 and 7. In
Table 2 we summarize the exponents from these fits.
The values of βq and β̃q are in good agreement with
theory, when α ≈ 2 corresponding to the NN slope
distribution of Figure 4 for smaller slope values.

3. Ballistic Deposition. Our estimate for the growth expo-
nent is β = 1.16±0.03, as measured for the largest sys-
tem of size L = 131072 from the global width w(t). For
smaller system sizes we measured a somewhat smaller
value for the growth exponent β ≈ 0.95. The estimate
for the dynamic exponent is z = 1.12 ± 0.07. The val-
ues measured in reference [44] differ slightly from our
estimates. Regarding the local exponents βq and β̃q, in
analogy to the DLA case it’s not possible to pin them
down uniquely. Data using systems of sizes L = 65536
for σq(t), and L = 2048 for Cq(t) are shown in Fig-
ures 6 and 7, respectively. The results of least-squares
fitting are in Table 3. Again, when we use α ≈ 2.1 the
numerical results are in good agreement with theory.

Fig. 8. The scaling function g2(t/t0) of equation (25) for the
BD model. The data are extracted from simulation with L =
4096. Inset shows the same function for the NTIP model. Here
system size is L = 2048.

Above, we mentioned that the function P (∆h) has a
non-algebraic tail when NN slopes become large. This can
in fact be seen from the NN height difference correlation
function σq(t). The functions σq(t) for small t, have the
q dependent power law exponents βq as given by equa-
tion (19). However, for longer times these functions turn
parallel as demonstrated in the inset of Figure 6 for the BD
model with L = 4096. In this regime, the local growth ex-
ponents become independent of q. After another crossover
time, the usual saturation regime begins. This means that
the scaling of σq is given by

σq(t) ∼



tβq , for t � Lz;
tβ

′
, for t ≈ Lz;

Lz, for t � Lz,
(37)

where we find within our numerical accuracy that β′ ≈ β.
Thus, multiscaling vanishes in this regime. Similar behav-
ior has recently been seen in other DLA type of models de-
scribing electrochemical deposition experiments [19]. We
think that this change is related to the well-known shad-
owing instability for the DLA and BD models [14], which
leads into a change in the evolution of the interface mor-
phology at later times. The effect of the shadow instabil-
ity is also visible as a bump in the correlation functions
Gq(x, t) at large values of x corresponding to the spatial
distance between the large “leaves” in the aggregates (see
Fig. 3), or in the small k values of the structure factor.
This conclusion is also supported by the fact that in the
IP models, this phenomenon does not occur.

5.3 Scaling

To check the validity of the scaling formulas derived in Sec-
tion 3.2, we have numerically evaluated the corresponding
scaling functions. In Figure 8, the scaling function g2(t0/t)
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Fig. 9. Scaling of the correlation function C2(t, L) with the
system size for the NTIP model. The range of system sizes is
L = 128, . . . , 2048, and inset shows the unscaled data. The
correlation functions were evaluated in the saturated regime.

of equation (25) is shown for both the BD and NTIP mod-
els. These scaling functions show very strong finite size
effects due to large fluctuations especially for higher mo-
ments q, so that large enough lattices must be used in the
calculations.

Finally, the finite-size scaling for the functions C2(t, L)
with various system sizes L is shown in Figure 9 for the
NTIP model. The inset shows the raw data, and in the
main figure we observe very good scaling as predicted by
equation (36).

6 Conclusions

In this work, we have examined the dynamical scaling
and kinetic roughening of driven single-valued fronts in
2D fractal media. First, through analytic arguments we
have shown that the local NN slope distribution function
obeys an algebraic decay law, with a decay exponent α
which for isotropic percolation can be obtained from the
known geometric exponents of the underlying fractal clus-
ter. Based on the algebraic Lévy behavior, we have then
considered generalized scaling of the relevant correlation
functions, and derived exact expressions for the roughen-
ing exponents. Our results show that kinetic roughening
under these circumstances is of intrinsic anomalous type,
with multiscaling and explicitly q dependent local rough-
ness exponents. Particularly remarkable is also the result
that the global roughness exponent χ is completely and
uniquely determined by the decay exponent α. This means
that by measuring the scaling of single-valued fronts, one
can obtain direct geometrical information about the un-
derlying fractal cluster.

We have tested the theoretical predictions numerically
by simulations of three well-known models which produce
different spatial fractals. For the invasion percolation mod-
els, we find behavior in excellent agreement with theory.

For the two other growth models, there is more compli-
cated behavior due to the large-scale instabilities of the
growing aggregate structures. Similar crossover behavior
has also been observed in DLA type of models describ-
ing electrochemical deposition [19]. It would be of great
interest to test these predictions experimentally.
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Piché, Phys. Rev. E 51, 4232 (1995); J. Stat. Phys. 81,
737 (1995)

11. M.P. Kuittu, M. Haataja, N. Provatas, T. Ala-Nissila,
Phys. Rev. E 58, 1514 (1998); ibid. 59, 3774 (1999)

12. T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400
(1981)

13. D. Wilkinson, J. Willemsen, J. Phys. A 16, 3365 (1983)
14. R.P.U. Karunasiri, R. Bruinsma, J. Rudnick, Phys. Rev.

Lett. 62, 788 (1989); G.S. Bales, A. Zangwill, Phys. Rev.
Lett. 63, 692 (1989)
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